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Abstract

A generalized linear mixed model is used to examine how a selection of explanatory variables
are related to dioxins and PCBs in European whitefish in Swedish waters. The long term
goal is to perform the fishing in a manner that ensures low levels of dioxins and PCBs in fish
going for sale. Data are supplied by the project ”Dioxins in oily fish - threats and potential
for development of small scale coastal and lake fishing” by IVL Swedish Environmental
Research Institute in collaboration with SLU Aqua and the Swedish Veterinary Institute.
The dependent variable used is assumed to be gamma distributed. It is a measure of toxicity
of the dioxin and PCB content in a fish. The link function used is logarithmic and adaptive
Gauss-Hermite quadrature is used to approximate the likelihood. Where in a body of water
a fish is caught is treated as a random effect. Results indicate that fat content, length,
and in which body of water a fish is caught is of importance. Seasonal changes and spatial
changes within a water is indicated to be of less importance.
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1 Introduction

This thesis constitutes a part of a larger project called ”Dioxins in oily fish- threats and
potential for development of small scale coastal and lake fishing” by IVL Swedish Environ-
mental Research Institute, SLU Aqua and The Swedish Veterinary Institute. The project
is running up until 2019 and the main purpose is to increase knowledge about how levels
of dioxin-like compounds (DLCs) varies over time and space, and thus be able to draw
conclusions in order to optimize small scale professional fishing, with respect to levels of
DLC in fish going for sale. The bodies of water included in the project are the Swedish
coast of the Gulf of Bothnia, Lake Vänern and Lake Vättern. Several species are included
in the program, but in this thesis, focus will be on European whitefish (sik in Swedish).

1.1 Questions for this project

As the situation is today, prevalence of DLCs in Swedish aquatic ecosystems limits the
potential to develop small scale fishing (Karlsson et al. 2018).

Regarding European whitefish, the Swedish National Food Agency has started a program
for food control in Lake Vänern and Lake Vättern with respect to dioxin-like substances.
This implies that every fisherman has to assure that a catch passes EU-regulations before
it can go for sale. Performing laboratory analyses on every batch of fish to investigate DLC
content would be very expensive and make sale of fresh fish impossible. Therefore, alterna-
tive ways of assuring that DLC content is low are investigated. As a part of investigating
this, it is of interest to increase knowledge about DLC content in European whitefish and to
use this knowledge when discussing how small scale professional fishing should be regulated.
A comment is that species like herring, salmon and trout are not subject to a food control
program, only recommendations for yearly consumption.

Here, statistical modelling is applied to data produced by the project in order to inves-
tigate if a systematic way of fishing that reduces content of DLCs in European whitefish
can be applied. For this thesis, interesting questions are:

• How does morphometric, spatial and temporal changes affect levels of DLCs in Euro-
pean whitefish in Lake Vänern, Lake Vättern and along the Swedish coast of the Gulf
of Bothnia.

Morphometric measures are bodily features of a fish, such as length and weight. Spa-
tial variations are variations within a body of water, as well as between different waters.
Temporal changes will be seasonal and yearly.

• Are previous believes enhanced?

Ideas about what affects DLC content in European whitefish have emerged during the
project ”Dioxins in oily fish- threats and potential for development of small scale coastal
and lake fishing”. It is of interest to see if these are justified or if something contradictory is
found. The question about previous believes relates to the first question. There exist ideas

5



in what direction, and to what magnitude morphometric, spatial and temporal changes
affects DLC content. This will be clarified later on and discussed in the discussion and
results section.

In an attempt to answer the research-questions, applying statistical methods and tech-
niques is reasonable for a number of reasons. First of all, statistical procedures are well
developed for situations similar to this, in which it is of interest to search for association
between levels of a DLC measure (dependent variable) and explanatory variables. Also, an
appropriate statistical analysis with formal tests gives a way to quantify when differences of
some quantities are large enough to be regarded as statistically significant or small enough
to be reasoned to appear by chance. These properties justifies construction of a model
consisting of a dependent variable expressed as a linear combination of some predictors.
Also, linear models are very flexible and can be adapted to many situations that may ap-
pear when wanting to investigate how some factors are associated with a response variable.
Also, techniques for model evaluation are well developed.

A comment is that the aim for this thesis is not to extrapolate results to other waters, or
other species, and thus, no emphasis will be put on that. The aim is to increase knowledge
about what affects DLC levels in European whitefish in Swedish waters, and use it as a
contribution when forming/discussing a potential control fishing program.

1.2 Dioxins and PCBs

1.2.1 Chemistry and usage

Dioxins are a group of chemicals in which the basic chemical structure is two benzene-rings
to were chloride atoms can attach, in different numbers and structures, forming different
congeners. The number of chloride atoms and in what way they attach to the benzene-
ring is related to specific properties of that substance. Dioxin is sub-categorized in two
groups: polychlorinated dibensofurans called furans and polychlorinated dibenso-p-dioxins,
most commonly called dioxin. In this text, when dioxin is mentioned, furans are included
and is sometimes denoted as PCDD/F.

PCBs, or polychlorated biphenyls also has two benzene-rings onto which chlorine atoms
can bind in different numbers and positions, forming different congeners. Some of these
congeners are classified as dioxin-like PCBs because of the planar structure the two benzene-
rings have, and these are also the most toxic ones. PCBs that are not dioxin-like have an
angle between the two benzene-rings, affecting the toxic properties. Due to the molecular
similarity between dioxins and dioxin-like PCBs, they show similar toxic properties. Dioxins,
furans and dioxin-like PCBs are, due to their similarities, called dioxin-like compounds
(DLCs).

These substances has historically been used for a variety of purposes in Swedish indus-
tries. PCBs main usages has been as an additive in different types of hydraulic fluids and
transformer oils, and in some substances used in construction, such as sealants. Using PCBs
is prohibited in Sweden since the 1970s, but due to their persistence they are still found in
for example fish and sediment.
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Dioxins forms as a residue during combustion, such as burning of waste. These emissions
enters ecosystems through precipitation. A part of the historical emissions are due to
chemical processes in paper- and pulp industries, such as bleaching of paper with elementary
chlorine, which was practiced up until the 1990s. Techniques that do not form dioxin as
a rest-product has been used since (H̊allén and Karlsson 2018). These historical emissions
were local, in the sense that they were confined to a smaller area in connection to the
industries, in comparison to atmospheric depositions that affect large areas.

1.2.2 Dangers and health issues

Once in an aquatic ecosystem, DLCs are persistent, meaning that they decompose into other
chemicals very slowly. Another property DLCs have is that they are fat soluble, leading to
them being stored in fat tissue. A consequence of this is that they accumulate to higher
concentrations higher up in the food chain.

Animal testing indicates that dioxins and PCBs affects the immune system, reproductive
system, hormonal system, and it might be cancerous. High doses can affect the nervous
system, and the development of the brain (Cantillana and Aune 2012).

1.2.3 Regulations and recommendations

The European Union has set a limit, with regards to dioxins and PCBs, to when fish is
being allowed for sale on the European market. Levels in European Whitefish caught in
Lake Vättern are usually under the limit, while levels in Vänern often are above (Karlsson
et al. 2018). Current limits are 3.5 pg/g TEQ wet weight for dioxins and 6.5 pg/g TEQ
wet weight for dioxins and dioxin-like PCBs combined (Commission 2011). The unit TEQ
(toxic equivalents) is discussed in the next section. Wet weight indicates that the laboratory
analysis has been made on raw, not dried, muscle tissue.

The Swedish National Food Agency has given a set of recommendations for the amount
of consumption of oily fish. Children under 18 and pregnant women are recommended to
eat oily fish from the Baltic sea, Vänern and Vättern at most 2-3 times per year. Others
are recommended not to eat such fish more than once a week (Cantillana and Aune 2012).

1.2.4 Toxic Equivalents

There are 210 congeners of PCDD/Fs and 209 of PCBs. In order to quantify the toxicity,
the World Health Organisation (WHO) derived a system where the concentration of each
congener in a sample is multiplied with a toxic equivalency factor (TEF) and added together
to form a measure of toxic equivalents (TEQ). The weights (TEFs) are expressed in relation
to the most toxic congene, 2378-TCDD which has TEF = 1. For less toxic congeners the
value is between zero and one. TEQ allows for obtaining a single measure of how toxic a
sample is (Van den Berg et al. 2006).
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1.2.5 Previous findings

Some of the previous findings in the project and other reports helps to give a clearer picture
of the situation. It is well established that fat content in fish has a positive correlation
with levels of DLCs (Karlsson et al. 2018). An idea to use fat content as a proxy for DLC
content in European whitefish has been tested, but results when using a hand-held device to
measure fat content of fish show much variation. Reliability need to be increased (Karlsson
et al. 2018).

The long term trend is that levels of DLCs are reducing in Swedish biotas, although in
recent years, the trend for PCDD/F is not as strong as for earlier years (Malmaeus and
Karlsson 2014).

Along the Swedish Coast of the Gulf of Bothnia, historical emissions from industries,
now stored in sediment, seem to have a local effect on levels in fish, (Malmaeus, Karlsson,
and Rahmberg 2012). For some congeners of PCB in perch, concentrations were shown to
be higher closer to urban/industrial areas (Nyberg et al. 2014).

Regarding European whitefish, variation in levels of DLCs seem to differ between waters.
In Lake Vänern, levels seem to be higher, in comparison to Lake Vättern and the Gulf of
Bothnia (Karlsson et al. 2018).

2 Data

Data used for the analysis are supplied by IVL Swedish Environmental Research Institute
and are part of the project ”Dioxins in oily fish- threats and potential for development of
small scale coastal and lake fishing” mentioned earlier. Data are collected between 2013
and 2019. Fish are caught either by staff from IVL or from local fishermen in Lake Vänern,
Lake Vättern or the along the Swedish coast of the Gulf of Bothnia (a few observations of
European whitefish has been caught in Denmark and the Netherlands, but these are not
considered here). Whole, frozen fish has been delivered to IVL:s laboratory in Stockholm
where preparation of fish has been made in accordance with EU-regulations and instruc-
tions from the Swedish National Food Agency. Information such as date of catch, location
of catch etc are supplied by the fishermen. Final laboratory analyses to obtain fat content
and concentrations of DLCs have been made by the laboratories ALS (Praha, Czech Re-
public) and Eurofins (Hamburg, Germany). Species included in the program are European
whitefish, herring, trout, salmon, perch and pike, but as mentioned, focus in this study is
on European whitefish, of which there are 268 observations.

2.1 Possible influences on conclusions

The procedure of collecting data affect the way the model is constructed. For example,
fishermen have been reporting themselves were they caught the fish. They have not followed
a set scheme of where to catch the fish, and fish have been caught at many different locations
(38 locations to be more precise). Also, a body of water can be seen as an area in which
there exist a very large number of possible sites to catch a fish. Since fishermen catch fish
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where they want, from a choice of many possible catch-sites, this makes, in statistical terms,
the catch-sites being seen as randomly chosen from a larger population of catch-sites. To use
all the information available, and to avoid the unwanted scenario of using dummy-variable-
coding to describe it, the parameter associated to catch-site can be treated as a random
variable, in contrast to being treated as fixed. This leads to conclusions being drawn in
terms of how much variation the catch-sites contribute with, rather than in levels of DLC for
every site. An alternative would have been to set up a fishing-scheme with a smaller number
of predetermined locations, in which locations could have been treated as fixed effects, or to
condense the full information by re-coding it to have fewer levels, making a dummy-coding
more suitable. Similarly, during what time of year fish are caught is not predetermined by a
scheme, having lead to no European whitefish being caught during summertime in Vänern.
This is clearly not optimal, but it has to be mentioned that it is common practice not to
fish European Whitefish in the summertime i Vänern, thus there are no observations for
this time of year. Furthermore, conclusions about a season-variable might be difficult to
interpret if it turns out to be statistically significant. The main theoretical belief about a
season effect is that when the fish spawn, they release the rum, which is high in fat, and
since DLC are fat soluble, some amount leave the fish with the rum. The issue is that the
population of European whitefish consist of different sub-species that spawn at different
seasons, and what sub-species a fish belongs to is not reported. This means that a possible
conclusion about a season effect might not be applicable in general, since it can depend on
a variable that is not observed.

Also, there are substantial amounts of missing data for some variables that could have
been a part of the final model. An example of this is that many fishermen have excluded to
report with what method they caught the fish. Fishing method could have been reasonable
to include in a model. Missing data reduces the possibility to construct a more extensive
model, and thus being able to evaluate the necessity of certain variables. It could have been
the case that fishing-method was irrelevant and could be dropped from a model, but having
the possibility to include it is preferable.

This relates to construction of linear models in general. If some important variable is
excluded, it could result in a mis-specified model that is not able to capture the underly-
ing structures in data, possibly resulting in poor inference, being noticed by structures in
residuals.

The structure of collected data might affect conclusions drawn in the sense that it might
reduce the possibility to find associations between variables. One thing that supports a case
when potential relations that exist can not be found is that data are highly unbalanced. For
example, the number of fish caught at a location varies a lot between locations. For some
locations, around 20 fish have been caught, and for some, only one. Also, the number of
observations per season is unbalanced. From a perspective of statistical power, this is not
optimal. Given a certain amount of observations, a balanced design increases the possibility
to detect associations that do exist, in contrast to a more unbalanced design.

Another way in which the process of collecting data might influence conclusions is the
fact that collective samples have been performed for some of the observations. Collective

9



sample means that muscle tissue from a number of fish caught at the same time and location
have been mixed together and then analyzed, resulting in a single measure of fat content
and concentrations of DLCs for a number of fish. That measure is therefore an average,
and in the corresponding record in the data, measurements such as length and weight are
also averages. This procedure has been done to reduce costs since laboratory analyses are
expensive. The distribution of collective samples is seen in Table 1.

#individuals #records

1 204
2 12
3 8
4 7
5 4
6 3

Table 1: Frequency table of collective samples of European whitefish

By taking averages and not obtaining data for all fish, the amount of available informa-
tion is reduced, and the total variance in data is reduced as well. Having information about
all fish, as compared to averages for some, is preferable. In an analysis, an approach to deal
with these collective sample must be chosen. One possibility is to include an observation
from a collective sample as if it is just one observation, not taking into account that the
observation in fact is an average. Another approach is to use weights that correspond to
the number of fish in the collective sample. If a collective sample was performed on three
fish, that record could be given a weight equal to three. Simulations performed indicates
that both these approaches leads to hypothesis tests being more conservative (for code, see
Appendix). A third approach is to exclude the observations that are collective samples,
but it leads to disregarding a lot of information, and is therefore not considered a viable
option. By looking at Table 1 it is clear that most observations are individual samples,
and that most collective samples are made on a few number of fish. This leads to a belief
that the collective samples is not a major problem when interpreting estimates. The chosen
approach to handle these is to use the number of individuals as weights. A collective sample
contains more information than for only one fish, and including weights are reasoned to be
the ”least bad” way to handle the lack of full information.

2.2 Response variable

When it comes to modelling, a measure of DLC content will be the response variable.
For every analyzed individual, data include concentrations for 17 congeners of PCDD/F,

12 congeners of dioxin-like PCB and 6 PCB congeners that are not dioxin-like. In this thesis,
analysis will be made using the one measure considered to contain the most information
about DLCs in European whitefish. This is the sum of all 29 (12+17) dioxin like-compounds
weighted with their corresponding TEF-value, resulting in a single TEQ-value of PCDD/F
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and PCB content. Formally, this is denoted
∑
PCDD/F +dl−PCB−TEQ pg/g ww, but

is for efficiency here referred to as dioPCB. The reader is reminded that in general, DLC
content is measured as concentrations, and dioPCB is a measure of toxicity, related to the
composition of congeners in a sample.

Other potential dependent variables, such as
∑
PCDD/F − TEQ pg/g ww,

∑
dl −

PCB − TEQ pg/g ww or the concentration of the PCBs that are not dioxin-like is also of
interest for the project ”Dioxins in oily fish- threats and potential for development of small
scale coastal and lake fishing”, but is not considered here.

The distribution of dioPCB is seen in Figure 1.

Figure 1: Dioxins and dioxin-like PCBs in analyzed samples of European whitefish.

2.3 Explanatory variables

Available explanatory variables that are candidates to be included in a model are seen in
Table 2. The variables ”Year,” ”Season” and ”Binary.Length” are not included in original
data provided by the project but are created from existing variables. ”Season” and ”Year”
was created using information from ”Date of catch” and ”Binary.Length” is a dummy-
coding of the original ”Length of the fish” variable, taking value zero if smaller than 38 and
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one if larger. The reason is that a potential part of a control-program for sales of European
whitefish is to only allow sales of fish shorter than some specified length. A proposal has
been set to 43 cm, but data do not support testing this limit since it contains very few fish
longer than 43 cm, so for a more balanced binary variable, the limit here is set to 38 cm.
All tests for European whitefish was performed by ALS (Praha,Czech Republic), so there
is no need to include Laboratory as a blocking variable. ”Year” is treated as a continuous
variable.

European whitefish has been caught at a total of 38 different locations (catch-sites)
in Lake Vänern, Lake Vättern and along the Swedish coast of the Gulf of Bothnia. As
mentioned previously, the number of observations per location is unbalanced (Table 3). To
get a perspective of how these are distributed, they are shown for Lake Vänern and Vättern
(Figure 2). Catch-sites for the Gulf of Bothnia are not included in the figure but they are
along the Swedish coast and ranging from Tierp in Uppland to Torne in the most northern
part.

Figure 2: Catch-sites of European whitefish in Lake Vänern and Lake Vättern. Gulf of
Bothnia not included but catch-sites there are along the Swedish coast and ranging from
Gräsö located outside Tierp to Torne in the north.
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Variable name NAs % categorical/continuous #levels

Laboratory 0 Cat 1
Body of water 0 Cat 3
Site of catch 0 Cat 38
Date of catch 4.2 - -
Year 4.1 Cont -
Season 4.2 Cat 4
Date of preparation* 10.9 - -
Coordinates of catch 21.8 Cont -
Number of individuals* 0 Cat 6
Sex 12.3 Cat 2
Binary.Length 1.26 Cat 2
Length 1.26 Cont -
Weight 10.9 Cont -
Somatic weight* 0.42 Cont -
Liver weight 19.3 Cont -
Gonad* 24.8 Cont -
CF (whole)* 10.9 Cont -
CF (Somatic) 1.68 Cont -
LSI* 8.82 Cont -
GSI* 14.3 Cont -
Fat percentage 0.84 Cont -
Fishermen 37.4 Cat 14
Fishing method 52.6 Cat 4
Catch depth 56.7 Cont -
Age(otolith)* 70.2 Cont -
Age(scale)* 77.7 Cont -

Table 2: Possible explanatory variables to use in a model.*Date of preparation=when muscle
tissue was prepared for analysis. Number of individuals = some catches of fish was analyzed
as collective samples, meaning that one record represents averages from a number of fish.
Somatic weight is the weight of gutted fish. Gonad is the weight of the reproductive organs
in the fish. Condition factor describes the body shape of the fish, calculated using length
and weight, whole or somatic. LSI= Liver Somatic Index, is the ratio of the liver weight to
the somatic weight of the fish. GSI = Gonad Somatic Index, is the ratio of gonad weight
to the somatic weight of the fish. Otholith is a calcium carbonate structure in the inner
ear. Its growth rings allows for determining age. Age is also determined by examining fish
scales.
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#individuals #Locations

1 12
2 5
3 3
4 4
5 2
6 2
7 2
9 1
10 1
11 1
14 1
17 1
18 1
24 1
38 1

Table 3: Frequency table of number of fish per catch-site.

3 Method

3.1 Motivation of using a generalized linear model

First of all, it can be of interest to motivate why a usual linear regression model without
any variable transformations is not a good choice for the intended analysis, and then to
motivate a choice among the remaining alternatives.

The most important features of the dependent variable here is that it is continuous,
values can not be negative and most observations have a small value.

A lower bound at zero is not in itself an issue in linear regression but it can be. Let’s
imagine a continuous variable with a lower bound at zero, but with a large mean value, low
standard deviation, and a fairly even distribution of observations around the mean. Linear
regression will most likely work well for such a dependent variable and given that the linear
predictor is specified well, inference will be credible. For dioPCB, many observations are
small and positive, leading to a skewed distribution. Performing linear regression will now
violate the assumption of normally distributed error terms, which is bad for inference.

Also, regarding the assumption of homoskedasticity, observations closer to the boundary
are likely to show less variability, which could result in a clear violation of the assumption.
To summarize, a linear regression without any transformation is not preferable since it leads
to violations of the assumptions of homoskedasticity and normality of error terms.

To resolve these issues there are two main strategies. One is to apply a transformation
to the dependent variable, and the other is to use a generalized linear model (GLM).
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Applying a transformation to the dependent variable, often a logarithmic or square
root, could result in less violation of the assumption of normally distributed residuals. If
homoskedasticity still is violated and the structure of how variances increases is known, it
can be accounted for using weights. An advantage with applying a transformation is the
simplicity, since the same procedures as for linear regression can be used. A downside can be
difficult interpretation. Interpretation is easily made in terms of the transformed variable,
but can be more demanding in the original scale of the variable.

Regarding the option of using a generalized linear model, a distribution of the dependent
variable has to be chosen. As mentioned, dioPCB is continuous and bounded below by zero,
so a distribution with these characteristics is suitable. Although, when relating this to the
discussion about increasing variance with increasing mean, the best choice is to assume a
gamma-distribution. The reason is that the gamma distribution has a constant coefficent of
variation (CV) that takes the increasing variability into account (Faraway 2016). In section
3.11 the calculation of the CV is shown. By using a gamma-GLM, both the problems
of homoskedasticity and normality of error terms are taken into account. It is shown in
section 4.3 that the variance does in fact increase with an increasing mean. Interpretation
of a generalized model can be more complicated, or it can be similar to a linear regression,
depending on the choice of what is called the link-funtion. This is explained more in depth
in section 4.4. For now it is concluded that multiple choices that might be more or less
suitable exist. A downside with using a gamma-GLM instead of applying a transformation
and assuming a variance structure is that most examples regarding model evaluation for
GLMs are based on other distributions, often binomial or Poisson. Since model evaluation
differs for different distributions, it is easier to find information about model fitting and
model evaluation when using a linear regression model.

With the discussion about assumptions and being able to choose between different link
functions in mind, a generalized linear model assuming a gamma distributed dependent
variable is regarded as the best choice. To be more specific, a generalized linear mixed
model is used. It is explained later on why it is reasonable to use a model where some
model parameters are treated as fixed, and other as random. If a transformation would
have been the choice, and a random parameter added, the model would have been called a
linear mixed model. The choice between generalization or transformation is based on the
same argumentation if random effects are included in the model or not.

3.2 The concept of generalized linear mixed models

A generalized linear mixed model is in essence an extension of a mixed effects model into
the framework of generalized linear models. For clarity, the theory section in this thesis
is therefore comprised of several parts. They introduce and describe the fundamentals of
mixed effects models, generalized linear models, merges the concepts into generalized linear
mixed models and describes difficulties with estimating these types of models. Described
procedures are put in relation to a gamma distributed dependent variable.
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3.3 Fixed effects

A mixed effects model can be seen as a combination of two commonly used techniques; the
fixed effects model and the random effects model.

The fixed effects model only includes explanatory variables that are regarded as non-
stochastic. The error term is the only random component of the model, and the explanatory
variables are either categorical or numerical. In matrix notation, a fixed effects model can
be expressed as:

y = Xβ + ε ε ∼ N(0,R), (1)

where X is the design matrix, β is the parameter vector and R is the covariance matrix
of the error terms. If the assumption of independence holds, all off-diagonal elements of R
are equal to zero. In practice that is never the case, and residual analysis is used as a tool
for indicating if the deviation from the assumption is large, in which case inference is poor.

3.4 Random effects

In an study, if factors levels for which measurements are made are chosen at random from
a larger population of levels, possibly infinitely large, then it can be suitable to regard this
effect as a random effect. This is often the case in biology and ecology. In some cases,
as for repeated measures designs, subjects on which repetitions are made can be seen as a
grouping variable that is random. It is usually assumed that the random effect is normally
distributed with mean zero and some variance. By treating a factor as random, estimation is
not made for specific factor levels, but rather the amount of variability the factor contributes
with. Another reason for treating a factor as random is that it might have many levels,
and treating it as fixed leads to estimation of many parameters, possibly resulting in an
overfitted model.

Random effect models are specified in the same manner as the fixed effects, the difference
being that the components of the parameter vector are treated as normally distributed
random variables.

3.5 Mixed Effects Model

If a model includes both fixed and random effects, it is called a mixed effects model. Below,
the structure of a mixed model is specified, and the assumptions are stated:

y = Xβ +Zu+ ε

[
u
ε

]
∼ N

(
0,

[
G 0
0 R

])
, (2)

where X is the design matrix for the fixed effects, β is the parameter vector for the fixed
effects, Z is the design matrix for the random effects and u is the parameter vector for the
random effects.

It is worth mentioning that assuming multivariate normality of the random components
is not necessary, but it is often done in order to make inferences based on normality. Zero
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mean and no correlation between u and ε on the other hand is a stricter assumption. Esti-
mated model parameters are maximum likelihood estimates. Important is that maximum
likelihood estimates are only asymptotically unbiased, so in small sample situations the re-
stricted maximum likelihood (REML) is an alternative (Lindstrom and Bates 1990). Both
maximum likelihood and restricted maximum likelihood estimates of parameters can be
solved for by a closed form expression, so an iterative procedure is not needed. Models with
more than one random effect have some structure of the random effects, nested or crossed,
but since it will not appear in this thesis it is left unexplained. More information can be
found in for example (Montgomery 2017, Ch.13). Here, one random effect is included in the
model, and it is said to add a random intercept. For every observation, a random compo-
nent associated with the corresponding level of the grouping variable is added to the usual
intercept. The grouping variable here is the location within a body of water where a fish is
caught (the catch-site).

3.6 Generalized linear models

Generalized linear models (GLM) is a family of models used when we want to fit a linear
model, but the response variable is not normally distributed. It was proposed by Nelder and
Weddeburn in (Nelder and Wedderburn 1972) and is used extensively. Common usages is
when response distributions are binomial, Poisson and of gamma-type . A GLM has three
main components, stated below:

• A response variable Y which follows a distribution that is an exponential family.

• A linear predictor ηi = xTi β where xi is one row of the design matrix and β is the
parameter vector.

• A link function g such that g(E(Yi)) = g(µi) = ηi (Dobson and Barnett 2018).

Expressed in words it can be said that the GLM-procedure model expected values of
the response, subject to a link function, as a linear combination of explanatory variables. A
computational difference between linear regression models and generalized linear models is
that maximum likelihood estimates of the parameters has to be solved iteratively for GLMs.
Another difference is that for the GLM, expected values are modelled, so no error term is
included in the linear predictor, whereas in linear regression models the observed values are
modelled, leading to the error term being included in the linear predictor. By giving a short
example it is clear that the usual linear regression model is a special case of a GLM: if the
link function g is the identity-link, meaning that g(µi) = µi, and Yi is assumed to follow a
normal distribution, the model is a linear regression model.

3.7 Gamma distribution and Exponential family

A probability distribution is an exponential family if it can be written on the form:
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f(y; θ) = ea(y)c(θ)+b(θ)+d(y) (3)

The functions a(.), b(.), c(.) and d(.) form the basis for constructing the equations for
parameter estimation in a GLM. Details of that process will not be shown here, but is
clearly stated in (Dobson and Barnett 2018). If the function a(y) = y the distribution is
said to be in canonical form, and if in addition, c(θ) = θ, θ is said to be the canonical
parameter. If also, a dispersion, φ, is included in the definition (otherwise, the dispersion is
included in other functions), the definition in (McCullagh and Nelder 1989) is obtained:

f(y|; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ d(y, φ)

)
(4)

If a distribution has more than one parameter, all but one has to be treated as fixed.
That is the case in this thesis where responses are assumed to follow a gamma distribution,
which is an exponential family, and has the following density function:

f(y;α, γ) =
γα

Γ(α)
yα−1e−γy 0 < y <∞ α, γ > 0,

with
E(Y ) =

α

γ
,

and
V ar(Y ) =

α

γ2

In order use to this distribution in a GLM, α is treated as a constant, so it is a function
of the dispersion parameter and γ is related to θ.

3.8 Generalized linear mixed models

In this section, the GLM-methodology is applied to the linear mixed model. These type of
models arise due to two characteristics: Assuming a non-normal response and the inclusion
of one or more random effects. The inclusion of random effects makes data being viewed
as grouped or clustered. In, for example repeated measures designs, the same subject is
believed to have correlated outcomes for the different repetitions, and in this thesis, when
catch-site is included as a random effect, fish caught at the same location leads to a belief
of DLC levels in these observations being correlated instead of independent. Observations
within the same group are not seen as independent, but independent when conditioned on
the grouping variable (the random effect). In matrix notation when the number of random
effects is not restricted, applying the link function to the conditioned Y :s yields:

g(E(Y |u)) = g(µ) = η = Xβ +Zu (5)

When only one grouping variable is included, it introduces an indexation where ij
denotes the i:th observation within the j:th level of the grouping variable. Each level
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of j has nj observations and there are N levels. For a generalized linear model with one
random effect, the linear predictor is:

ηij = xTijβ + uj , (6)

where xTij is the row in the fixed effects design matrix corresponding to observation ij, β is
the fixed effects parameter vector and uj is the random component associated to the j :th
level of the grouping variable.

The main issue with parameter estimation in generalized linear mixed models is that
the usual maximum likelihood or restricted maximum likelihood approach does not work.
Due to the inclusion of random effects in the linear predictor, the likelihood consists of an
integral that can not be evaluated analytically unless a normal distribution is assumed and
the identity link is used (i.e the model is a linear mixed model). A numerical approximation
of this integral can be calculated in order to obtain parameter estimates. Another alternative
is to use a Bayesian approach.

Now the likelihood is specified. Since the observations in y are assumed independent only
when conditioned on the random effects u, and the likelihood of interest is the marginal
likelihood of y, the joint density has to be integrated over the random effects. The full
likelihood is given by:

L(β, φ,G; y) =

∫
f(y,u|β, φ,G)du =∫

f(y|u;β,φ)f(u|G)du =

N∏
j=1

∫ nj∏
i=1

f(yij |uj ;β,φ)f(uj |G)duj

In relation to data used here, a random intercept model is used, so u is not a vector and
the variance-covariance structure of G is a scalar, denoted τ2. The likelihood then becomes:

L(β, φ, τ2; y) =
N∏
j=1

∫ nj∏
i=1

f(yij |uj ;β,φ)f(uj |τ2)duj (7)

3.9 Method of approximating the likelihood function

As mentioned, the likelihood function in a generalized linear mixed model can not be eval-
uated analytically, resulting in an approximate method having to be chosen. A variety
of approaches have been suggested and implemented in software for this purpose. These
include the penalized and marginal quasi-likelihood (Breslow and Clayton 1993), maximum
likelihood approaches such as the Monte Carlo EM-method and Monte Carlo Newton-
Raphson (McCulloch 1997) and Bayesian approaches such as the Markov-Chain Monte
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Carlo approach (Hadfield 2010). Maximum likelihood-based methods relies on numeri-
cal approximations of the likelihood, often by using Gauss-Hermite quadrature, adaptive
Gauss-Hermite quadrature or Laplace integration.

However, studies of comparisons between these approaches are limited, and is potentially
an area for further research, especially for the case when the dependent variable is assumed
to be gamma-distributed. Most comparisons of methods are based on data sets in which
the dependent variable is binary, or a count. No papers of comparisons between methods
when performing a generalized linear mixed gamma model have been found. This results in
a choice being made based on the more general findings that has been found. For example,
in (Rabe-Hesketh, Skrondal, and Pickles 2002) it is argued that advantages of marginal
quasi-likelihood and penalized quasi-likelihood is computational efficiency, the downside is
that they perform poor for binary data with small cluster sizes. MCMC-methods seem to
be a reasonable alternative, but downsides being that they are computationally intensive
and that it can be difficult to evaluate when the chain has converged to a stationary dis-
tribution. Gauss-Hermite quadrature appear to be a reasonable alternative. By adjusting
the number of quadrature points, exactness of approximations increases but the process
becomes more computationally intensive. Gauss-Hermite quadrature also gives values for
likelihoods which can be a basis for likelihood-ratio tests (Rabe-Hesketh, Skrondal, and
Pickles 2002). Downsides appear to be possible poor performance in some situations in-
volving binary or Poisson data, when intraclass correlation is high. Another downside is
that inclusion of many random effects in combination with many quadrature points makes
Gauss-Hermite quadrature computationally intensive. Adaptive Gauss-Hermite quadrature
is a modification of the ordinary Gauss-Hermite quadrature that yields a better approxima-
tion but increases computational intensity even more. In terms of computational intensity
of standard and adaptive quadrature, the main increase is due to inclusion of many random
effects in the model.

With this discussion as a basis, the choice is to use adaptive Gauss- Hermite quadrature.
In models in this thesis, only one random effect is included, making the procedure not so
computationally intensive, and the ability to change the amount of quadrature points in
order to achieve a better approximation is regarded as an advantage. Also, likelihood-ratio
tests can be of interest when evaluating models. The downsides that have been discovered
do not seem directly applicable to data used in this thesis. Gauss-Hermite is implemented
as a standard procedure in both R and SAS, which could serve as an informal indica-
tion of strengths of the method. The R-function glmer is constructed based on adaptive
Gauss-Hermite quadrature and will be used for estimation of models. This program uses a
maximum likelihood approach in combination with approximating the intractable integral
using adaptive quadrature. As seen in (McCulloch 1997), several ways to implement a max-
imum likelihood approach exists, and descriptions of the lme4 -package of which glmer is a
part of, do not specify exactly which maximum likelihood approach that is implemented.
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3.10 Gauss-Hermite quadrature

The basic idea of Gauss-Hermite quadrature is to approximate an integral by a summa-
tion consisting of function values and weights. In its most general form, Gauss-Hermite
quadrature can be written as:∫ ∞

−∞
f(x)e−x

2
dx ≈

N∑
j=1

wjf(xj) (8)

Where wj is a weight and N is the number of points xj (quadrature points) to evaluate the
function f(x) at.

A re-expression of the integral in (8) that is more relatable to the likelihood in (7) allows
for an arbitrary Gaussian density instead of just e−x

2
and is expressed as:∫ ∞

−∞
f(x)φ(x;µ, σ2)dx ≈

N∑
j=1

w∗jf(x∗j )

Where φ(x;µ, σ2) is the Gaussian density. The weights w∗j and nodes x∗j are transformations
of the weights and nodes corresponding to (8).

In terms of a generalized linear mixed model, f(x) corresponds to the conditional density
f(y|u) and the Gaussian density corresponds to f(u) since f(u) is assumed to follow a normal
distribution.

The quadrature points xj and weights wj are derived from the Hermite polynomials,
which is a sequence of polynomials of increasing degree, in which any two polynomials are
orthogonal. If N quadrature points are chosen, the xj : s are the N roots of the N : th
degree Hermite polynomial, and the weights are a function of the xj : s. In the case
of Adaptive Gauss-Hermite quadrature, the quadrature points and weights are modified
in order to better approximate the peak of the function to be integrated. It does so by
shifting and scaling the quadrature points to locate them under the peak of the function.
If the number of quadrature points equals one, the Adaptive Gauss-Hermite quadrature
is equivalent to a Laplace approximation, which is a simpler but common technique for
numerical integration. A more thorough explanation can be found in (Rabe-Hesketh and
Skrondal 2004).

3.11 Basics of Generalized Linear Gamma Models

Using the function in (4), in exponential family theory, the mean µ expressed in terms of
the canonical parameter is simply: b′(θ) = µ where b(θ) is called the cumulant function.
For the gamma distribution, b′(θ) = µ = d

dθ (−ln(−θ)) = −1
θ . Since gamma distributions

has two parameters, as mentioned previously, α is treated as constant and can be shown to
equal φ = 1

α , called the dispersion parameter.
Note that the gamma-GLM can handle dispersion in a good way. When treating α as a

constant, the coefficient of variation (CV) is constant:
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CV =

√
V ar(Yi)

E(Yi)
=

√
αγ−2i

αγ−1i
=

1√
α

After fitting the model, the maximum likelihood estimate of the dispersion parameter
can be obtained using:

φ̂ML =
1

α̂
=

χ2

n− p

where χ2 is the Pearson χ2-statistic, χ2 =
∑ (yi−µ̂i)2

V (µ̂i)
, n is the number of observations and

p is the number of parameters in the model. The estimate of the dispersion parameter is
not always of interest when evaluating models.

3.11.1 Deviance residuals

For generalized linear models, checking normality for the residuals yi − µ̂i, where yi is an
observation of the dependent variable and µ̂i is the estimated mean, is not as meaningful
as for linear regression. Instead, deviance residuals are a more suitable measure. They are
the contribution from each data point to the deviance measure specified as:

D = 2(l(β̂max|y)− l(β̂|y)),

where l(β̂max|y) is the likelihood for a model with the maximum number of parameters
that can be estimated, a saturated model.
For a generalized linear gamma model, the deviance is:

D = −2

n∑
i=1

(
log

(
yi
µ̂i

)
− yi − µ̂i

µ̂i

)
,

obtaining the deviance residuals di as:

di = sign(yi − µ̂i)

√
−2

(
log

(
yi
µ̂i

)
− yi − µ̂i

µ̂i

)
,

resulting in the deviance being equal to the sum of squared deviance residuals

D =
n∑
i=1

d2i

3.11.2 The canonical link function

Often i GLMs, the canonical link is used as the link function. It is the function h(.) that
satisfies:

22



h(µ) = θ,

and because

µ = −1

θ
,

the canonical link is the negative inverse, since

−(µ)−1 = −(−1

θ
)−1 = θ

Usually, the minus sign is disregarded, and the canonical link is specified as just the
inverse. As mentioned, this is often used as the link function, but other functions can be
chosen. For proofs and a more thorough explanation, see (McCullagh and Nelder 1989).
Here it is specified explicitly because it gives a simpler expression for the conditional density
than another link function would.

When the canonical link is used and the model is extended to a generalized linear mixed
model rather than a generalized linear model, y is conditioned on the random component
u, and θ is replaced with η, resulting in the following expression for the conditional density:

f(y|u;β, φ) = exp

(
yη − b(η)

a(φ)
+ d(y, φ)

)
(9)

It is now clear how the linear predictor is a part of the conditional density that is a part
of the intractable integral that has to be approximated in order to obtain the likelihood of
y.

4 Model Specification and choice of link function

The model specified in equation (6) is a general way to specify a generalized linear mixed
model with one random effect. A more specific model is needed for data used in this thesis.
Construction of a first model is based on which explanatory variables that are theoretically
interesting and reasonable to include (due to missing values) and also on which interactions
that are interesting. The view on interaction effects in this thesis is that they should be
included based on a theoretical belief that they might be present. First, the model is stated,
and then, the reasoning behind it is explained.

The linear predictor is:

η = β0 + uj + β1lLake+ β2Fat+ β3bin.Length+ β4Y ear + β5CFS+

β6kSeason+ β7lFat ∗ Lake+ β8Fat ∗ bin.Length+ β9kFat ∗ Season
(10)

l = 1, 2 k = 1, 2, 3 and Uj ∼ N(0, τ2)
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where uj is the random component associated with catch site j.

The coding of fixed effects included in the model is:

• Lake corresponds ”Body of Water” (although the Baltic Sea is not a lake). Levels are
Lake Vänern, Lake Vättern and the Baltic Sea. All areas within the Baltic Sea has
been combined to this name, because of few observations in sub-areas.

• Fat is fat content. Original scale is percentage of fat in live weight muscle tissue.
Scaled to mean zero and unity standard deviation in estimation procedure.

• bin.Lenght (binary length) takes the value 0 if a fish is shorter than 38 cm, and 1
otherwise.

• Year is treated as continous, with 2015=0, 2016=1 etc. Years includes 2015, 2016,
2017 and 2018. Scaled to mean zero and unity standard deviation in estimation
procedure.

• CFS is the somatic condition factor, calulated as somaticweight
length3

. Scaled to mean zero
and unity standard deviation in estimation procedure.

• Season is summer, fall, winter or spring.

4.1 Main effects

From variables in Table 2, a linear predictor has been constructed. The aim is to include
variables that do not have too many missing values, in order to have as many observations as
possible in the final model, and to have both morphometric, spatial and temporal variables.
The temporal variables of most relevance are Season and Year. Some alternatives for
morphometric variables are functions of each other, for example Condition Factor (Whole
or Somatic) is a function of Length and Weight (Whole or Somatic). The correlation
between Length and Somatic Weight is 0.8. The choice is to only include Length. The
correlation between Length and CFS is 0.1 so both can be included without having too high
correlation between explanatory variables. The only spatial information not included in
the model is the coordinates of where a fish was caught. The name of the location is used
instead.

4.2 Interaction effects

The interactions included in (10) are explained and motivated below.
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4.2.1 Interaction between length of the fish and fat content

Length serves as a proxy for age here (younger fish are generally shorter). Smaller fish are
not top predators, and to a larger extent eat plankton that have lower levels of DLCs as
compared to larger fish that have another diet. Because of this, smaller fish can have a
lower increase in DLC levels per every unit increase of fat content, as compared to longer
fish, that most likely are older. ”Age” has too many missing values to be included in the
model. A similar argument about DLC levels and age is a basis for the decision by the
Swedish government to only allow sales of herring that are smaller than 17 cm in length.

4.2.2 Interaction between ”Lake” and fat content

It is believed that the relation between fat content and levels of DLCs might vary between
Lake Vänern, Lake Vättern and The Gulf of Bothnia. It is of interest to know if some bodies
of water show different degree of association between fat content and levels of DLCs. In
the perspective of development of small scale fishing of European Whitefish this interaction
might be of small practical use since fat content is difficult to measure, and the proposed
control program is only directed towards Lake Vänern.

4.2.3 Interaction between fat content and season

Fat content has previously been seen as a proxy for DLC content, and if season and fat
content only are included as main effects, finding a season effect might be difficult since
fat content is believed to vary by season and thus leading to change in DLC content. In
a regression-type interpretation, a significant season effect is interpreted as ”given the fat
content (and other explanatory variables), the estimated difference in dioPCB is β̂x be-
tween season = reference and seasonk”, but since fat content might change with seasonal
changes, an interaction is added.

4.3 Link function

Possible link functions are discussed based on two perspectives. One is how the link function
is suitable for data, in terms of model fit and meeting assumptions of the model. The other
is how the choice of link function affects interpretability of the model. Best case scenario
is that a link function gives a good fit, and parameter estimates that have an intuitive
interpretation that is in line with theory about how DLC content in fish is related to
different variables.

In general, the criterion for a link function is that it is a monotone and differentiable
function. Often, the canonical link is chosen since it has tractable statistical properties,
but it is not a necessary choice. For gamma distributions, common link functions are the
inverse link 1

µ = η (canonical), log link log(µ) = η or identity link µ = η. The choice will
be one of these. An idea would be to compare the model fit (using some deviance measure)
for the same linear predictor and response variable, but with different links. This idea
however is not suitable when comparing link functions since models are not nested. A log
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link for example gives a multiplicative model if exponentiated, while an identity link gives
an additive, and deviance measures are not suitable for comparison between such models.
Instead, a choice will be based on residual plots and a discussion about which link function
that gives a not too complicated interpretation of estimates. First, residual plots are shown
and discussed. The model in (10) is fitted with the potential link functions and residual
diagnostics are evaluated. Two plots are shown, one with deviance residuals vs predicted
values and one with response residuals (y − ŷ) vs predicted values. In a plot of deviance
residuals vs predicted values, two things are of interest: Does the variance change with
changing magnitude of the predicted values? Large changes are unwanted since it results
in poor inference.

Is there any non-linear pattern in the plot? Any clear pattern in the plot, for example
a quadratic, could be an indication of some structure in data that has not been captured
by the model. The philosophy adopted when looking at residual plots is that assumptions
are always violated, what differs is how severe the violation is.

Figure 3: Residuals vs fitted values from estimation of model (10) using log link. Upper
plot show deviance residuals vs predicted values. Lower plot show response residuals vs
fitted values. Horizontal axis is fitted values in link scale.
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From Figure 3, which show plots of residuals vs fitted values for model (10) with log-
link, no clear indication of unequal variance is seen in the upper plot. Possibly, variances
are slightly lower for high and low predicted values, but there are fewer points here, so it
is difficult to see. A pattern indicating non-linearity might be seen. The left and right tail
appears to have a slight downward slope. More data could have enhanced or rejected this
belief. In general, the plot looks good. No clear violation of assumptions or inability to
capture structures in data is seen. The lower plot shows the response residuals vs fitted
values. Response residuals have not taken dispersion into account and here it is seen that
variances of response residuals increases with increasing fitted values. In fact, this plot acts
as a justification of the belief stated earlier that variance increases with increasing mean
values. DLC levels was believed to show higher variances for higher levels. This was one of
the arguments for choosing a gamma distribution.

Figure 4: Residuals vs fitted values from estimation of model (10) using inverse link. Upper
plot show deviance residuals vs predicted values. Lower plot show response residuals vs
fitted values. Horizontal axis is fitted values in link scale.

From Figure 4, which show plots of residuals vs fitted values for model (10) with inverse-
link, possibly, lower variance in the right corner is seen, but lower amount of points here
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makes it difficult to know for certain. No patterns indicating a poorly specified model is
visible. In the lower plot, variances are declining for larger fitted values, but since it is in
the link scale and the link is the inverse function, variances are actually increasing with
increasing mean values, as was stated in the discussion about Figure 3.

Figure 5: Residuals vs fitted values from estimation of model (10) using identity link.
Upper plot show deviance residuals vs predicted values. Lower plot show response residuals
vs fitted values. Horizontal axis is fitted values in link scale.

In Figure 5 , which show plots of residuals vs fitted values for model (10) with identity-
link, variances seem to be lower for larger deviance residuals, which is not good in terms
of meeting assumptions of the model. In terms of patterns indicating non-linearity, none is
seen. Regarding the lower plot, variances increase up to a certain point an then seem to
even out, which is not in accordance with gamma-theory in which variances always should
increase with increasing mean. A general comment for all residual plots discussed is that
when it comes to suspicion about patterns and variances, it is the same group of observations
that lead to these suspicion. The group is the observations seen in the right hand side of
the upper plot in Figure 3, 4 and 5.
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4.4 Link function and interpretability

Ideally, a link function gives an interpretation of parameter estimates that agrees with
theory on how morphometric, spatial and temporal changes affect DLC content in fish.
This model, whose main effects and interactions have been discussed with parts involved
in the project, comes from theory similar to a usual regression model, meaning that effects
might be believed to be additive, and possible multiplicative associations are dealt with
by including interaction terms in the linear predictor. A linear predictor for a gamma
model that is in most correspondence with this is the identity link. Using this link gives
an interpretation that is the same as for a linear regression. On the other hand, while
discussing a possible model with the Swedish Veterinary Institute, a log transformation was
proposed to account for skewness of data, so a multiplicative model (in the original scale)
seems to be acceptable as well. Related to residual plots, when deciding on a link function,
a trade-off between easy interpretation and less violation of assumptions (leading to more
credible inference) has to be made.

A comment on using the log link is that a positive parameter estimate indicates that an
increasing value (or change in factor level for categorical variables) leads to an increase in the
mean value of the response, and vice versa. What the problem is in terms of interpretation
is the magnitude of a significant effect. A short example for a simple GLM is shown to
exemplify this. The linear predictor consists of an intercept and two explanatory variables
and the link function is logarithmic:

ln(µ) = β0 + β1x1 + β2x2 (11)

In ln(µ) the effects of x1 does not depend on the value of x2.
in terms of µ, the model is:

µ = eβ0+β1x1+β2x2

In which the magnitude of the effect of x1 depends on the value of x2.
Another potential issue that has been noted while fitting the same model with different

links is that no interaction effects are significant while using the log link. A possible reason
could be that the intuition behind interactions is not the same for different link functions.
They can be redundant for the log link. This is argumented for by the following example:

If the true relation between the dependent and explanatory variables is non-linear and
let’s say it can be described fairly accurate by the relation:

µ = exp(β0 + β1x1 + β2x2) (12)

Then, a second order Taylor series expansion about a point (x01, x
0
2) is:
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µ = f(x1, x2) = f(x01, x
0
2) + f

′
x1(x01, x

0
2)(x1 − x01) + f

′
x2(x01, x

0
2)(x2 − x02)+

1

2
f
′′
x1(x01, x

0
2)(x1 − x01)2 +

1

2
f
′′
x2(x01, x

0
2)(x2 − x02)2+

f
′′
x1x2(x01, x

0
2)(x1 − x01)(x2 − x02) +Remainder,

in which the right hand side looks similar to a linear predictor. It has an ”intercept”,
”main effects” and ”interactions”. To simplify this expression and to really exemplify that
a Taylor series expansion is similar to how a linear predictor can be constructed, the point
of evaluation is now (x01 = 0, x02 = 0) and derivatives evaluated at this point, which are
constants, are denoted as βx. The following expression is obtained:

µ = f(x1, x2) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 +Remainder

This expression includes interaction terms, so in order to construct a good linear pre-
dictor for a situation where (12) describes data well and no function is applied to µ, first
order interactions should be included.

If instead, a log link is used when the true relation is approximately as in (12), the model
becomes linear in terms of the linear predictor, as in (11), and the Taylor series expansion
would be

ln(µ) = f(x1, x2) = β0 + β1x1 + β2x2 +Remainder

since the second order derivatives and mixed derivative are equal to zero. The remainder
is also zero, so the approximation is in fact exact (but it is written out to show that a
Taylor series expansion is made). Thus, interactions are not relevant to include in a linear
predictor if the true relation between the dependent and explanatory variables is as in (12)
and a log-link is used.

To summarize, no significant interactions in estimation when using the log link could
act as a justification that the true relation between dioPCB and the explanatory variables
is non-linear, similar to (12).

This example together with the discussion about residuals plots, leads to a decision to
base inference on models fitted with a log link. For the inverse and identity link, the residual
variance decreases for larger fitted values. Residual plots for log link look better in terms
of equal variance, and in the gamma log link model, effects considered as interaction effects
can be ”hidden” or ”implicit”. In that case, it is not adequate to specify interaction effects
in the model.

5 Results

In this section, results from estimating the model described in (10) are shown and discussed
and a subset of the model where insignificant parameters are removed is fitted. Interpreta-
tion of estimates and model evaluation is performed. Model evaluation serves as a part in
discussing how trustworthy results from model fitting are. Models are fitted using the glmer
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function in the lme4 -package in R. In order to ensure convergence of parameter estimates
in the iterative procedure, glmer requires that continuous explanatory variables are scaled
to have zero mean and unit standard deviation. When interpreting parameter estimates
for these variables, this is taken into consideration. The number of quadrature points used
is one. An attempt was made to increase accuracy by increasing the number of points
but it was not successful. An increase lead to a singular fit, a consequence of model (10)
being large in relation to the number of observations in combination with unbalanced data.
Removal of insignificant parameters is done based on an estimation that could have been
more accurate. The analysis is made on 224 observations.

In Table 4, results from estimation of model (10) with log-link is displayed.
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estimate & significance

(Intercept) 1.05∗∗∗

LakeBalticSea −1.84∗∗∗

LakeVättern −0.29
Fat 0.32
binLengthlong 0.19∗∗

Year −0.11∗∗

CFS −0.16∗∗

Seasonspring 0.24∗

Seasonsummer 0.96∗∗

Seasonwinter 0.35∗

LakeBalticSea:Fat 0.31
LakeVättern:Fat 0.17
Fat:binLengthlong 0.06
Fat:Seasonspring 0.17
Fat:Seasonsummer 0.45
Fat:Seasonwinter 0.15

AIC 1187.20
BIC 1248.61
Log Likelihood -575.60
Num. obs. 224
Num. groups: Location 38
Var: Location (Intercept) 0.13
Var: Residual 0.32
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Results from estimation of model (10) with log-link. Hypothesis tests are
Wald t-tests. Continuous variables are scaled to zero mean and unit standard deviation.
Laplace approximation used to approximate the likelihood. Lake=Vänern, Season=Fall,
binLength=short are reference categories.

The hypothesis tests reported are Wald t-tests. Advantages with these are that they are
easily calculated. A downside is that they might not work well for smaller samples sizes,
since the test is based on normality but the test statistic is only asymptotically normally
distributed. An alternative is to perform likelihood ratio tests. The likelihood ratio test
(LR-test) is asymptotically equivalent to a Wald t-test but has been shown to perform
slightly better for smaller sample sizes (Tuerlinckx et al. 2006). A drawback is that two
models have to be fitted in order to test a parameter. LR-tests were performed to test all
parameters in model 10 but results are not displayed here, since the LR-tests gave the same
results as the Wald t-tests.

Insignificant variables are now removed from the model. Regarding the interactions, all
include Fat, giving some reason to believe that the interactions might hide the main effect,
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so the main effect is kept in the model. The model without interactions is fitted and results
from this estimation is seen in Table 5. It is now clear that removal of the interactions led
to Fat being significant.

estimate & significance

(Intercept) 1.07∗∗∗

LakeBalticSea −1.79∗∗∗

LakeVättern −0.33
Fat 0.54∗∗∗

binLengthlong 0.20∗∗

Year −0.11∗∗

CFS −0.13∗∗

Seasonspring 0.19
Seasonsummer 0.73∗∗∗

Seasonwinter 0.29

AIC 1180.90
BIC 1221.84
Log Likelihood -578.45
Num. obs. 224
Num. groups: Location 38
Var: Location (Intercept) 0.14
Var: Residual 0.32
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: Results from estimation of model (10) without interactions and with log-link. Hy-
pothesis tests are Wald t-tests. Continuous variables are scaled to zero mean and unit stan-
dard deviation. Laplace approximation used to approximate the likelihood. Lake=Vänern,
Season=Fall, binLength=short are reference categories.

5.1 Lake effect

The result for differences between bodies of waters seen in Table 5 are separate tests for
Lake Vänern and the Baltic Sea compared to Lake Vänern. To account for the family-
wise error rate, Tukey’s multiple comparison procedure is performed, with results seen in
Table 6. The test is complemented with a boxplot of levels for the different waters (Figure
6). Details about Tukey’s test are not presented here, but can be found in for example
(Montgomery 2017). Results indicate that levels of dioPCB is generally lowest for the
Baltic Sea. No significant difference was found between Lake Vänern and Lake Vättern. In
reality, a difference is believed to exist between Lake Vänern and Lake Vättern, but this
difference is likely to be related to generally lower fat percentages in Lake Vättern.
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Figure 6: Boxplot of dioPCB in European whitefish per body of water.

H0 estimate std.error Pr(> |z|)
BalticSea-Vänern=0 -1.78 0.29 < 0.001
Vättern-Vänern=0 -0.33 0.22 0.31

Vättern-BalticSea=0 1.47 0.30 < 0.001

Table 6: Multiple comparison hypothesis test of Lake-effect using Tukey’s procedure. Sig-
nificance level of 5% is used. Alternative hypothesis is two-sided.

5.2 Morphometry, ”Year” and fat content

Regarding fat content, the modelling procedure indicates that higher fat content is related
to higher levels of dioPCB in European whitefish. Length seems to have an influence as
well. Longer fish tend to have higher levels. Year is also significant, and the estimate is
negative, indicating that with time, levels of dioPCB are reducing. The somatic condition
factor is significant, indicating that smaller values of the condition factor is associated with
lower levels of dioPCB.

Values of the continuous variables have been rescaled. In order to obtain the estimates
in terms of the original scale, estimates in Table (5) have to be divided with the original
scale standard deviation. Standard deviations of continuous variables in original scales are
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seen in Table 7.

Variable st.dev

Fat 2.43
Year 1.01
CFS 0.14

Table 7: Standard deviation of continuous variables in original scale.

Interpretations of magnitudes in terms of the log-link are not so meaningful. What
can be done is to estimate how large the relative change is for a unit change of a variable,
instead of how large the absolute change is. The relative change is:

relative change =
µ̂|Xi = xi

µ̂|Xi = xi + 1
= eβ̂i

For example, a unit increase in fat content would lead to a relative change in dioPCB
of e(0.51/2.43) = 1.23. Expressed in words: By increasing the fat content with one unit, the
level of dioPCB is expected to increase by 23%. Expected absolute changes have to be
calculated by deciding on values for the fixed parameters.

5.3 Season effect

Results from estimation display differences between spring-fall, summer-fall, and winter-
fall. In order to test all possible combinations, and to take the family-wise error rate into
account, Tukey’s multiple comparison procedure is applied.

First, to get an indication of the differences, a boxplot of dioPCB for every season is
shown in Figure 7.

Results from Tukey’s multiple comparison procedure is seen in Table 8. The only sig-
nificant difference is between summer and fall, with summer having the lowest levels. In-
terpretation should be done with caution due to structure of data. As mentioned earlier,
no European whitefish was caught during summertime in Lake Vänern, so extrapolating
results to apply for Lake Vänern should not be made. In terms of a control fishing program,
the formal tests do not indicate that fishing at any specific season or season is preferable.
Also, as for the lake effect, there is a belief that differences between seasons with respect to
dioPCB are due to variations in fat content between the seasons. Inclusion of interactions
was the original way to try to investigate this, but they were argumented to be redundant
for the log link. The best way to figure out how fat content is related to changes in seasons
and different bodies of waters is to construct a model with fat content as the dependent
variable, but it is not done in this thesis.
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Figure 7: Boxplot of dioxin-like compounds in European whitefish per season.

H0 estimate std.error Pr(> |z|)
spring-fall=0 0.19 0.11 0.28

summer-fall=0 0.73 0.20 0.0019
winter-fall=0 0.29 0.16 0.21

summer-spring=0 0.54 0.21 0.053
winter-spring=0 0.10 0.16 0.91

winter-summer=0 -0.44 0.25 0.27

Table 8: Multiple comparison hypothesis test of Season-effect using Tukey’s procedure.
Significance level of 5% is used. Alternative hypothesis is two-sided. Significant difference
only between summer and fall.
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5.4 Inference about random effect - ”Location”

When it comes to the random effect, which in this model is a random intercept corresponding
to Location, inference is more difficult than for fixed effects. A frequentistic approach is to
test the hypothesis H0 : τ2 = 0 vs H1 : τ2 > 0, where τ2 is the random effect variance.
One problem is that zero is the lowest possible value for the variance component, so the
estimate can not ”move” freely within the range of the hypothesis test. It is concluded
in literature, such as in (Goldman and Whelan 2000) that such tests are conservative.
Another problem is that using a likelihood-ratio test might not make sense when only one
random effect is in the model, the reason being that the nested model without the random
effect is not a generalized linear mixed model but a generalized linear model. Generalized
linear mixed models and generalized linear models use different techniques for obtaining
maximum likelihood estimates, so comparisons of goodness-of-fit statistics such as AIC
might be misleading. Also, it not so clear how many degrees of freedom to assign to the
random effect. The random effect often has many levels, so the degrees of freedom could be
the number of levels minus one, but in the model only one variance component is estimated,
corresponding to one degree of freedom. Still, the authors of lme4 argues that ”With recent
versions of lme4, goodness-of-fit (deviance) can be compared between (g)lmer (generalized
mixed) and (g)lm (generalized) models” (Bolker 2019), so such a comparison is performed
here. The model with the random effect is assumed to have one degree of freedom more
than the model without. Output seen in Table 9 indicates that Location contributes with a
significant amount of variability in dioPCB levels in European whitefish. This test should
be interpreted with caution, as explained by the discussion in this section.

Df AIC logLik deviance Chisq Chi Df Pr(>Chisq)

no random effect 11 1236.65 -607.32 1214.65
with random effect 12 1180.90 -578.45 1156.90 57.75 1 0.0000

Table 9: Likelihood-ratio test of significance of random effect Location. Null hypothesis of
no random effect variance is rejected.

Leaving formal tests of the random parameter, another perspective of its importance
can be made by looking at the estimate and compare it with the residual variability. The
estimated Location variability is τ̂2 = 0.14, and the unexplained variability is σ̂2 = 0.32. It
means that the largest part of the variation in the model is due to unexplained variation, not
variation that is a contribution from the catch-sites. This, in combination with the inference
made about differences between bodies of waters, indicates that in terms of reducing dioPCB
in a catch, it is more efficient to change body of water than to change site within a body of
water.

Regarding Location as a part of the model, there are two choices: to keep it in the
model or to remove it. The likelihood-ratio test indicates that Location should be kept in
the model (although the test should be interpreted cautiously). The choice is to keep it
in the model, since the indications to drop it is not very strong. Removing it from the
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model would result in the model being a generalized linear model, in which the likelihood
L(y;β, φ) does not involve an intractable integral.

5.5 Normality assumption

Here, the normality assumption is evaluated. Normality is checked for both the deviance
residuals and the random intercept associated to every level of Location. Results are seen
in Figure 8 and Figure 9. A slight s-shape is seen in the plots, which might correspond with
the potential non-linear pattern seen in residual plot in Figure 3. For the other links, the
s-shape was less apparent. Overall, the points lie on a straight line, especially in the middle,
which is the most important region. No severe violations of the normality assumptions are
seen.

Figure 8: Quantile-Quantile plot of deviance residuals for model 10 fitted with log-link.
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Figure 9: Quantile-Quantile plot of random intercepts model 10 fitted with log-link.

6 Discussion

An attempt was made to, given available data, answer how morphometric, spatial and
temporal changes affect DLC content. In order to do this, a generalized linear mixed model
was constructed, with arguments about the range and distribution of the response variable
dioPCB and a discussion about treating explanatory variables as fixed or random. A
generalized linear mixed model was chosen, with the catch-site (Location) being treated as
a random effect and dioPCB as gamma distributed. A model was fitted with different link
functions and the suitability of each was discussed. A choice was made to base inference on
models fitted with a log link. To evaluate the severity of violating assumptions, QQ-plots
and plots of residuals vs fitted values were shown and discussed in order to have an idea
of how credible inference about parameter estimates are. Assumptions were not violated
enough to view inference as poor. In this section, the results from estimation are discusses
in terms of previous believes that have emerged during the project ”Dioxins in oily fish -
threats and potential for development of small scale coastal and lake fishing” and also in
terms of a control fishing program.

The modelling procedure indicated that morphometric changes lead to changes in dioPCB.
Fish longer than 38 cm was indicated to in general have higher levels as compared to fish
shorter than 38 cm. This is in line with previous believes. Regarding length, a proposal to a
possible control fishing program has been to only allow sales of European whitefish shorter
than 43 cm. Data did not support this cutoff value as part of an analysis. Too few fish were
longer than this value. Instead, 38 cm was used. Whether or not results can be extrapo-
lated to fish longer or shorter than 43 cm is not discussed here, but is left for experts in the
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field. The somatic condition factor was significant with a negative sign, and the previous
belief was that this would have had a positive sign if significant. A high condition factor
means that the fish has a high weight in relation to its length. This might be discussed or
evaluated further outside this thesis (also, there is a chance of having conducted a type one
error).

Seasonal changes were shown to have some influence on the levels of dioPCB. Significant
differences were found between summer and fall, with summer having lower levels. A
visual inspection of the boxplot of dioPCB indicated that summer might have lower levels
compared to spring and winter as well, but formal tests did not support this. The varying
amount of observations per season gave an indication that statistical power would have
been better if data were more balanced. The significant difference between summer and
fall should not be relied upon in a control fishing program, the reason being that fish
caught during summer have only been caught in Lake Vättern and the Baltic sea. Having
observations from Lake Vänern as well, where levels of DLC tend to be higher, is likely
to result in higher levels for summer, making summer more similar to the other seasons.
Also, it would have been preferable if it was known to what sub-species an individual is. A
possible season effect comes from an idea that spawning leads to changes in fat content. If,
for example, fish spawn in spring, fat content could be lower for this season. The issue is
that European whitefish consists of a number of different sub-species, spawning at different
seasons, possibly confounding a season effect.

If there is a need to increase the power of formal tests for this effect, more observations
would have to be collected for seasons with few observations and having information about
sub-species is preferable, but it might be impossible or difficult to find it out. As it appears
now, in terms of a control fishing program, there is no strong indication that any season
or seasons are better to fish at than others. A previous belief was that there might be a
season effect, but results from estimation does not support this belief.

Catch-site (Location) was concluded to have an effect on levels of dioPCB, although
not very large. Further investigation would possibly include an attempt to find catch-sites
with generally lower levels of dioPCB. Here, emphasis was in obtaining and evaluating an
estimate of the variability, not evaluating levels of individual sites, or giving suggestions of
possible new sites to fish at. The conclusion that the Location effect is not very large is in
accordance with with previous believes. In (H̊allén and Karlsson 2018) it stated that most
likely, the situation regarding DLCs today is mostly affected by atmospheric deposition
rather than locally polluted sediment. Also, European whitefish is not a stationary species.
Catching one individual at a location does not mean that it has lived its whole life in
that area. It could have been feeding in more or less polluted areas, thus ”hiding” a local
pollution.

Regarding fat content, a belief that it is strongly related to dioPCB was enhanced. In
connection to beliefs about other interesting variables related to DLC content, some were
believed to be connected to fat content. For example, variations between different bodies
of waters was believed to come from generally higher fat content in Lake Vänern, and a
season effect could possibly be connected to fat content as well. Put simply, relations could
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be as:

Such relations are suggested to be examined further, possibly by fitting a model with
fat content as dependent variable and Lake, Season and other variables of interest in the
linear predictor. Still, given fat content, the Baltic Sea was shown to have significantly
lower levels of dioPCB then both Lake Vänern and Lake Vättern.

The amount and structure of data was found to partially limit to what extent it could
be analyzed. A lot of explanatory variables and their interactions were interesting, close
to occupying to many degrees of freedom needed for a good model fit. A more accurate
approximation of the likelihood could have been made by increasing the number of nodes
used in the adaptive Gauss-Hermite quadrature, but data did not support this.

When it comes to collecting data, it was not optimally performed from a statistical
point of view. In terms of statistical power, effort should have been put on obtaining more
balanced data. The number of fish caught at different sites varies greatly, as well as the
number of observations per season and body of water. A plus is that the catch-sites are
evenly distributed in the waters of interest. Considering financial aspects, it is of interest
to get as much information as possible for a given budget. Potentially, a lower number of
observations can be collected for the same statistical power, given that the data collecting
procedure is constructed with an idea about how to get the most information (given a budget
or time restriction). However, implementing this in this project would not be reasonable
from a practical perspective. If a fisherman catches ten fish at one spot, and two at another,
of course data will be unbalanced and it is not reasonable to tell a fisherman to go to a
certain spot at a certain time point and to catch a certain number of fish. It is also the case
that fishing is more common for different seasons. Still, the research questions are regarded
answered with some confidence, and connected to the discussion about planning studies
with regard to statistical power, it is left to the parts involved in the project to discuss
what can be done about this in the final year of the project, and in future projects. A final
comment is that more fish are continuously being analyzed and added to data throughout
2019, and information about an individuals age will be added, so results and conclusions
drawn here can be updated in the future.
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iner i fet fisk - Hot och utvecklingsmöjligheter för svenskt sm̊askaligt kust- och insjöfiske”.
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8 Appendix

Code from simulation with purpose of verifying that collective samples results in more
conservative tests, as compared to having analyzed every individual:

# MASS−package f o r mult . norm sampling
l ibrary ( ”MASS” )

samples <− 50
r <− 0 .2 # c o r r e l a t i o n
# w e i g h t s e q u a l to number o f v a l u e s t h a t i s taken average o f
w <− c (10 , rep (1 , samples −10))
pvec <− (NA)
pvecm <− (NA)
pvecmw <− (NA)
for ( i in 1 :1000) {

#sample data two v e c t o r s wi th c o r r e l a t i o n
data <− mvrnorm(n=samples , mu=c (0 , 0 ) ,

Sigma=matrix ( c (1 , r , r , 1 ) , nrow=2))
data <− as . data . frame (data )
#averag ing f i r s t ten rows to one o b s e r v a t i o n
meandat <− rbind ( colMeans (data [ 1 : 1 0 , ] ) , data [ 1 1 : samples , ] )
meandat <− cbind ( meandat ,w) #adding w e i g h t s
ht e s t <− lm(V1˜V2 , data = data ) # f i t t i n g r e g r e s s i o n s
htestmean <− lm(V1˜V2 , data = meandat )
htestmeanw <− lm(V1˜V2 , data = meandat , weights = w)
#s t o r i n g r e s u l t s f o r t e s t s o f ” f u l l ” d a t a s e t
pvec [ i ] <− summary( h t e s t )$coef f ic ients [ 2 , 4 ]
#s t o r i n g r e s u l t s f o r t e s t s o f when f i r s t ten obs are c o l l a p s e d to mean
pvecm [ i ] <− summary( htestmean )$coef f ic ients [ 2 , 4 ]
#f i r s t ten obs c o l l a p s e d to means and weighted
pvecmw [ i ] <− summary( htestmeanw )$coef f ic ients [ 2 , 4 ]

}
#r e j e c t i o n r a t e s in pvec
r r a t e <− length ( pvec [ pvec <0 .05 ] )/length ( pvec )

#r e j e c t i o n r a t e s in pvecm
rratem <− length (pvecm [ pvecm<0 .05 ] )/length (pvecm)
#r e j e c t i o n r a t e s in pvecmw
rratemw <− length (pvecmw [ pvecmw<0 .05 ] )/length (pvecmw)
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